Recent years have seen a proliferation of research on adversarial machine learning. Numerous papers demonstrate powerful algorithmic attacks against a wide variety of machine learning (ML) models, and numerous other papers propose defenses that can withstand most attacks. However, abundant real-world evidence suggests that actual attackers use simple tactics to subvert ML-driven systems, and as a result security practitioners have not prioritized adversarial ML defenses. Motivated by the apparent gap between researchers and practitioners, this position paper aims to bridge the two domains. We first present three real-world case studies from which we can glean practical insights unknown or neglected in research. Next we analyze all adversarial ML papers recently published in top security conferences, highlighting positive trends and blind spots. Finally, we state positions on precise and cost-driven threat modeling, collaboration between industry and academia, and reproducible research. We believe that our positions, if adopted, will increase the real-world impact of future endeavours in adversarial ML, bringing both researchers and practitioners closer to their shared goal of improving the security of ML systems.
translated by 谷歌翻译
Although machine learning based algorithms have been extensively used for detecting phishing websites, there has been relatively little work on how adversaries may attack such "phishing detectors" (PDs for short). In this paper, we propose a set of Gray-Box attacks on PDs that an adversary may use which vary depending on the knowledge that he has about the PD. We show that these attacks severely degrade the effectiveness of several existing PDs. We then propose the concept of operation chains that iteratively map an original set of features to a new set of features and develop the "Protective Operation Chain" (POC for short) algorithm. POC leverages the combination of random feature selection and feature mappings in order to increase the attacker's uncertainty about the target PD. Using 3 existing publicly available datasets plus a fourth that we have created and will release upon the publication of this paper, we show that POC is more robust to these attacks than past competing work, while preserving predictive performance when no adversarial attacks are present. Moreover, POC is robust to attacks on 13 different classifiers, not just one. These results are shown to be statistically significant at the p < 0.001 level.
translated by 谷歌翻译
Did you know that over 70 million of Dota2 players have their in-game data freely accessible? What if such data is used in malicious ways? This paper is the first to investigate such a problem. Motivated by the widespread popularity of video games, we propose the first threat model for Attribute Inference Attacks (AIA) in the Dota2 context. We explain how (and why) attackers can exploit the abundant public data in the Dota2 ecosystem to infer private information about its players. Due to lack of concrete evidence on the efficacy of our AIA, we empirically prove and assess their impact in reality. By conducting an extensive survey on $\sim$500 Dota2 players spanning over 26k matches, we verify whether a correlation exists between a player's Dota2 activity and their real-life. Then, after finding such a link ($p\!<\!0.01$ and $\rho>0.3$), we ethically perform diverse AIA. We leverage the capabilities of machine learning to infer real-life attributes of the respondents of our survey by using their publicly available in-game data. Our results show that, by applying domain expertise, some AIA can reach up to 98% precision and over 90% accuracy. This paper hence raises the alarm on a subtle, but concrete threat that can potentially affect the entire competitive gaming landscape. We alerted the developers of Dota2.
translated by 谷歌翻译
第五代(5G)网络必须支持数十亿个异质设备,同时保证最佳服务质量(QoS)。这样的要求是不可能单独满足人类努力的,而机器学习(ML)代表了5G中的核心资产。然而,已知ML容易受到对抗例子的影响。此外,正如我们的论文所表明的那样,5G上下文暴露于另一种类型的对抗ML攻击,而现有威胁模型无法正式化。由于缺乏可用于对抗性ML研究的ML供电的5G设备,因此对此类风险的积极评估也有挑战性。为了解决这些问题,我们提出了一种新型的对抗ML威胁模型,该模型特别适合5G场景,不可知ML所解决的精确函数。与现有的ML威胁模型相反,我们的攻击不需要对目标5G系统的任何妥协,同时由于QoS保证和5G网络的开放性质仍然可行。此外,我们为基于公共数据的现实ML安全评估提供了一个原始框架。我们主动评估我们的威胁模型对5G中设想的ML的6个应用。我们的攻击会影响训练和推理阶段,可能会降低最先进的ML系统的性能,并且与以前的攻击相比,进入障碍较低。
translated by 谷歌翻译
机器学习(ML)代表了当前和未来信息系统的关键技术,许多域已经利用了ML的功能。但是,网络安全中ML的部署仍处于早期阶段,揭示了研究和实践之间的显着差异。这种差异在当前的最新目的中具有其根本原因,该原因不允许识别ML在网络安全中的作用。除非广泛的受众理解其利弊,否则ML的全部潜力将永远不会释放。本文是对ML在整个网络安全领域中的作用的首次尝试 - 对任何对此主题感兴趣的潜在读者。我们强调了ML在人类驱动的检测方法方面的优势,以及ML在网络安全方面可以解决的其他任务。此外,我们阐明了影响网络安全部署实际ML部署的各种固有问题。最后,我们介绍了各种利益相关者如何为网络安全中ML的未来发展做出贡献,这对于该领域的进一步进步至关重要。我们的贡献补充了两项实际案例研究,这些案例研究描述了ML作为对网络威胁的辩护的工业应用。
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译
Deep learning-based object detection is a powerful approach for detecting faulty insulators in power lines. This involves training an object detection model from scratch, or fine tuning a model that is pre-trained on benchmark computer vision datasets. This approach works well with a large number of insulator images, but can result in unreliable models in the low data regime. The current literature mainly focuses on detecting the presence or absence of insulator caps, which is a relatively easy detection task, and does not consider detection of finer faults such as flashed and broken disks. In this article, we formulate three object detection tasks for insulator and asset inspection from aerial images, focusing on incipient faults in disks. We curate a large reference dataset of insulator images that can be used to learn robust features for detecting healthy and faulty insulators. We study the advantage of using this dataset in the low target data regime by pre-training on the reference dataset followed by fine-tuning on the target dataset. The results suggest that object detection models can be used to detect faults in insulators at a much incipient stage, and that transfer learning adds value depending on the type of object detection model. We identify key factors that dictate performance in the low data-regime and outline potential approaches to improve the state-of-the-art.
translated by 谷歌翻译
Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning.
translated by 谷歌翻译
A systematic review on machine-learning strategies for improving generalizability (cross-subjects and cross-sessions) electroencephalography (EEG) based in emotion classification was realized. In this context, the non-stationarity of EEG signals is a critical issue and can lead to the Dataset Shift problem. Several architectures and methods have been proposed to address this issue, mainly based on transfer learning methods. 418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases through a search query focusing on modern machine learning techniques for generalization in EEG-based emotion assessment. Among these papers, 75 were found eligible based on their relevance to the problem. Studies lacking a specific cross-subject and cross-session validation strategy and making use of other biosignals as support were excluded. On the basis of the selected papers' analysis, a taxonomy of the studies employing Machine Learning (ML) methods was proposed, together with a brief discussion on the different ML approaches involved. The studies with the best results in terms of average classification accuracy were identified, supporting that transfer learning methods seem to perform better than other approaches. A discussion is proposed on the impact of (i) the emotion theoretical models and (ii) psychological screening of the experimental sample on the classifier performances.
translated by 谷歌翻译
We extend best-subset selection to linear Multi-Task Learning (MTL), where a set of linear models are jointly trained on a collection of datasets (``tasks''). Allowing the regression coefficients of tasks to have different sparsity patterns (i.e., different supports), we propose a modeling framework for MTL that encourages models to share information across tasks, for a given covariate, through separately 1) shrinking the coefficient supports together, and/or 2) shrinking the coefficient values together. This allows models to borrow strength during variable selection even when the coefficient values differ markedly between tasks. We express our modeling framework as a Mixed-Integer Program, and propose efficient and scalable algorithms based on block coordinate descent and combinatorial local search. We show our estimator achieves statistically optimal prediction rates. Importantly, our theory characterizes how our estimator leverages the shared support information across tasks to achieve better variable selection performance. We evaluate the performance of our method in simulations and two biology applications. Our proposed approaches outperform other sparse MTL methods in variable selection and prediction accuracy. Interestingly, penalties that shrink the supports together often outperform penalties that shrink the coefficient values together. We will release an R package implementing our methods.
translated by 谷歌翻译